

Latest results from the Tevatron

J.S. Wilson

For the CDF and D0 collaborations

June 16, 2016

- ► The Tevatron gave us a unique dataset: proton-antiproton collisions at 1.96 TeV
- ► Two experiments, CDF and D0, recorded 10 fb⁻¹ each
- ► Highlights of the entire Tevatron program:
 - discovery of the top quark
 - \blacktriangleright observation of B_s oscillations
 - observation of single top
 - discovery of huge number of b hadrons
 - evidence for the Higgs
 - very precise W boson mass
- ▶ Finished operations in Sept 2011
- ► Still analyzing data almost five years later

Since the last Users Meeting, 28 Tevatron analyses have been published, submitted, or released for the first time!

- Almost 400 physicists from 54 institutions in 13 countries
- Spokespersons Giorgio Bellettini and David Toback
- Recorded first collisions October 1985
- ▶ 544 PhD theses
- ► 697 publications
- Expect to surpass 700 publications by end of year

- Almost 400 physicists from 66 institutions in 19 countries
- Spokespersons Dmitri Denisov and Paul Grannis
- ► Recorded first collisions May 1992
- ▶ 478 PhD theses
- 489 publications
- ► Expect to surpass 500 publications by end of year

The DØ Collaboration

- ▶ What good can Tevatron data do today? Isn't the LHC all we need?
- ▶ No. The Tevatron data has some unique features
 - ► Lower instantaneous luminosity reduced backgrounds for certain processes
 - ► Proton-antiproton collisions anti-symmetric initial state and enhanced cross sections
 - ► Lower energy different parton distributions, different region of QCD phase space
- ► So, using Tevatron data, we can
 - ▶ Perform high-precision measurements of standard model parameters
 - Measure forward-backward asymmetries
 - ► Constrain QCD and PDFs in unique phase space
 - ► We can even still find new particles / states

- ► Top quark discovered at the Tevatron in 1995
- Tevatron data still used for high-precision measurements of its properties – competitive with LHC
- LHC measurements in most sensitive channels limited by systematic uncertainties
- ► Direct measurements afflicted by definition difficulties: "PYTHIA mass", about 1 GeV/c² effect

- D0 has had great success in controlling systematics
- ▶ 2015 D0 measurement in lepton+jets channel 174.98 \pm 0.76 GeV c^{-2}
- Recent measurements in the dilepton final state from CDF and D0:
 - ► CDF neutrino ϕ weighting method: 171.46 \pm 3.15 GeV c^{-2}
 - ▶ D0 matrix element method: $173.93 \pm 1.84 \text{ GeV } c^{-2}$
- ► D0 also extracts top quark pole mass from cross section, avoiding theoretical issues
 - ► $172.8^{+3.4}_{-3.6}$ GeV c^{-2}
- Important piece of testing standard model consistency

- weak mixing angle via forward-backward asymmetry of lepton pairs from Z/γ^* decay
- ▶ Made possible by $p\bar{p}$ initial state
- Most sensitive results from a hadron collider, and competitive with lepton colliders!
- ► Allow indirect measurements of W mass, precision 24 MeV/c²
- ► Compare to precision of direct measurement, 15 MeV/c²
- Also used to constrain PDFs, will aid direct W mass measurement

0.226 0.228 0.23 0.232 0.234 sin² θ^{lept}

Definition:

$$A_{\mathsf{FB}} = rac{N(\mathsf{forward}) - N(\mathsf{backward})}{N(\mathsf{forward}) + N(\mathsf{backward})}$$

 Wrapping up the top forward-backward asymmetry measurements

Can only be measured at the

- Tevatron − LHC measures a related quantity A_C

 AFB in dilepton channel at CDF
- and D0 both recently published
- Top AFB at Tevatron used to show tension with predictions
- Many exotic explanations were proposed
- Standard model calculations improved (to NNLO+) and experiments got more data
- Tension now resolved

Heavy quark AFB

- Complements top AFB
- Agreement with SM
- ▶ See AFB caused by $Z o bar{b}$

- ▶ D0 measures AFB of Λ_b , Ξ , and Ω baryons
- ightharpoonup \equiv and Ω consistent with zero
- Λ_b AFB demonstrates "string drag" effect (Rosner)
- Universal function of rapidity loss independent of collider, energy, etc.

Variety of measurements allow us to constrain parton content of the proton at different scales

- CDF measures cross section for prompt, isolated photons
- ▶ Dominated by $q\bar{q}$ and gq initial states
- ► Good agreement with SHERPA and MCFM

- D0 measures cross section for diphoton+dijet events
- Sensitive to double-parton interaction and to gg and $q\bar{q}$ initial states
- Effective cross section shows "volume" occupied by quarks and gluons in the proton

- ▶ D0 sees simultaneous J/ψ with Υ
- ► Dominated by gg initial state and double-parton interactions
- ► Measure effective cross section
- Smaller than $\sigma_{\rm eff}$ in diphoton+dijet, indicating gluons occupy smaller "volume" in proton than quarks do

Experiment, Final state, Yea	AFS, 4¦, '86 UA2, 4¦, '91 CDF, 4¦, '93 D0, J/\(\psi\)J/\(\psi\), '14 LHCb, Y+D'*, '15 D0, J/\(\psi\)+Y, '15
ment, Fir	CDF,γ3j, '97 D0,γ3j, '09 D0,γ3j, '13 D0,γb(c)2j, '13
Experi	ATLAS, W2j, '11 CMS, W2j, '13 -15 -10 -5 0 5 10 15 20 25 30
	σ _{eff} [mb]

σ_{off} measurements

- $\begin{array}{c|c} \text{Production process} & \text{Fraction of} \\ \hline & W(\rightarrow \ell \nu) + D^* \text{ signal} \\ \hline & s(d) + g \rightarrow W + c \\ \hline & q + \overline{q}' \rightarrow W + g(\rightarrow c\overline{c}) \\ \hline & q + \overline{q}' \rightarrow W + g(\rightarrow b\overline{b}) \\ \hline & 13 \pm 5\% \\ \hline \end{array}$
- ► CDF $W/Z + D^*$
 - Sensitive to CKM matrix element V_{cs}
 - Constrains strange quark PDF
 - Refine hadronization models

- \blacktriangleright Prompt vs non-prompt ratio measured for first time, $\sim 40\,\%$ non-prompt
- ► LHCb initially did not see this state, but now sees it (as of 2 weeks ago)

- ▶ D0 observes novel resonance in $B_s^0 \pi^{\pm}$ final state
- Tetraquark candidate first with four different quark flavors!
- ► 5567.8 \pm 2.9(stat.) $^{+0.9}_{-1.9}$ (syst.) MeV c^{-2}
- ▶ Global significance 5.1σ
- ► arXiv:1602.07588, accepted by PRL
- ► LHCb reports not seeing X(5568) looking forward to other experiments' searches

Summary

- With 28 papers in last year, Tevatron still contributing great science In the next year or two, look forward to:
- ► Tevatron and World combinations of top mass

 - ► Improvements to top pole mass
 - ▶ Direct W boson mass with entire data set
 - ▶ Final weak mixing angle and indirect W boson mass
 - ► Tetraquark X(5568) studies
- Many papers had to be left out due to time full list in backup slides
- ► Thanks to Accelerator Division, the spokespersons, the collaborations, and the Users Meeting organizers for making this talk possible!

- ▶ D0 dilepton top mass (matrix element) arXiv:1606.02814
- ▶ D0 top cross section and pole mass arXiv:1605.06168
- ▶ D0 B_s^0 lifetime arXiv:1603.01302
- ▶ D0 tetraquark arXiv:1602.07588
- ▶ D0 top spin correlation PLB 757 199
- ▶ D0 Ξ and Ω AFB PRD 93 112001
- ▶ D0 double parton PRD 93 052008
- ► D0 J/ ψ ↑ PRL 116 082002
- ► D0 ∧ AFB PRD 93 032002
- ▶ D0 dilepton top mass (ν weighting) PLB 752 18
- ► D0 X(4140) PRL 115 232001
- ▶ D0 CPT and Lorentz violation in B_s^0 PRL 115 161601
- ▶ D0 dilepton top AFB and polarization PRD 92 052007
- ▶ D0 weak mixing angle PRL 115 041801

combination

- ► CDF inclusive photon XS CDF note 11180
- ► CDF electroweak mixing arXiv:1605.02719
- ► CDF W+jets CDF note 11167
- ► CDF dilepton top AFB PRD 93 112005
- ▶ CDF bottom AFB low mass PRD 93 112003.
- ► CDF Higgs in triphoton events arXiv:1601.04001
- ► CDF $W' \to tb$ PRI 115 061801
- ightharpoonup CDF $W/Z + D^*$ PRD 93 052012
- ► CDF single top in MET+jets PRD 93 032011
- ► CDF bottom AFB high mass PRD 92 032006
- ► CDF WW+jets PRD 91 111101
- ▶ CDF B_c^+ relative cross section PRD 93 052001
- CDF dilepton top mass PRD 92 032003
- ► Tevatron combined single top PRL 115 152003